CHO03_00488 4/3/00 8:30 AM Page 69 $

MAKING AN ADDING MACHINE

What'’s in Chapter 3

You have completed the Hello World applet and probably think pro-
gramming in Java is very easy. This is one of the simplest Java applica-
tions you can develop other than the infamous “to do list” sample. Each
chapter of this book increases in difficulty and complexity, and this
chapter covers visual programming in more detail. You will build a logic
bean and combine it with GUI beans to make an adding machine. You
will write some simple Java code for the logic bean to perform the cal-
culation function. This chapter covers the following topics:

JavaBeans basics

GUI beans

Nonvisual beans

e Composite beans

e Overview of Layout Managers

Building an Adding Machine

e Using a GridLayout

e Using TextFields

Setting the tab order of GUI beans
Adding the contents of two TextFields

development concepts. Many books exhaustively cover a particular object-

oriented methodology or specific design technique. Because this book
focuses on implementation, it covers only those object-oriented design concepts
necessary to understand the applications you are building. The Adding Machine
applet uses the Model-View-Controller design pattern that is common in object-
oriented programming. First, you build the view, then you build the model part.
This is okay, but in real life you will usually develop the model parts first; then
you develop the view parts, because view (or GUI) parts should not influence the
implementation of model parts. It is unrealistic to say that view parts have no
influence on model parts, but this influence should be minimal.

Now that you have completed a simple HelloWorld applet, it’s time to look

back at the steps and understand how you built it. Before you go on to more

[e9]

g s you go through this book, we cover some object-oriented and visual

o

CHO3_00488 4/3/00 8:30 AM Page 70 $

[70]

CHAPTER

complex programs, you need to understand the different types of JavaBeans. This
will help you design and implement your own Java applications. The JavaBeans
specification is a fundamental concept of JDK Version 1.1, and you need to
understand JavaBeans to fully utilize VisualAge for Java.

JavaBeans Basics

The notion of JavaBeans was introduced in JDK 1.1; VisualAge for Java uses
JavaBeans and generates JavaBeans. End users of a program using JavaBeans nei-
ther know nor have to care that JavaBeans were used. JavaBeans were introduced
primarily to assist Java developers; there are many changes to the JDK to support
JavaBeans. In this section, you will learn the basics behind JavaBeans, and in later
chapters, you will learn more detailed information about JavaBeans classes and
methods. JavaBeans are used throughout this book and in Chapter 14, “Servlets”
and Chapter 15, “Using Enterprise JavaBeans,” you learn how to use JavaBeans
in server-side programming. JDK 1.2 builds on JavaBeans basics and adds meth-
ods and new classes, but many of the package names are different.

NOTE

There is a separate version of VisualAge for Java that supports DK 1.2 that
you need to install if you want to use these new Java features. If you move
Java code from |JDK 1.1 to JDK 1.2, you will also need to modify the code
to reflect the new package names.

Different types of beans or classes are used in the Visual Composition Editor
(VCE). There are GUI beans, logic beans (also called invisible or nonvisual
beans), and composite beans. This section explains the three types of beans. These
JavaBeans terms are used by all Java different tools that support JavaBeans, and
they are different from the traditional VisualAge terms that have been used for
years. If you are a veteran VisualAge developer, you will recognize that GUI beans
are the same as Visual Parts, and logic or invisible beans are the same as
Nonvisual Parts.

What Are JavaBeans?

GUI beans and logic beans are Java classes, but there is a bit more to it than that.
A comprehensive JavaBeans specification that covers all requirements for a
JavaBeans component is available from the Sun web site at www.javasoft.com.
There are two key requirements for JavaBeans. First they must have a default con-
structor that takes no parameters. Classes can have many construcotrs, but the
visual builder tools rely on the default constructor to instantiate the class.

o

3

CHO3_00488 4/3/00 8:30 AM Page 71 $

[71] —

MAKING AN ADDING MACHINE

Secondly JavaBeans need to be serializable, which means the class declaration
needs to implement Serializable and implement the appropriate methods.
VisualAge for Java does not require that JavaBeans implement serizable as most
other Java development IDEs. In Chapter 8, “Deploying Java,” you will see how
to use nondefault constructors in the VCE.

NOTE

Default constructors can call nondefault constructors, ones that require
parameters. You can do this in the constructor code by hard coding
default values for the parameters. This may not seem like a good idea,
but remember that you just need a JavaBeans instance at development
time and you can change properties later.

A few Java books cover the bean specification in great depth, and there
are a ton of articles that give various varying overviews of JavaBeans. If you are
a Java tool developer, you need to be acquainted with what is needed for
JavaBeans. Studying at least one in-depth book on the bean specification is help-
ful but not required, but it would not hurt. Fortunately, VisualAge for Java gener-
ates JavaBeans and therefore insulates you from some of the technical details
relating to JavaBeans. However, it is important for you to understand how
JavaBeans work.

The entire JDK class library was updated to support JavaBeans, including
the new V1.1 event model. You can see how the event model works by examining
the code generated by VisualAge for Java. Because the JDK classes implement
new methods supporting the new event model, all AWT-based classes inherit these
special functions, which support the notification or messaging framework in the
JDK class library. Implementation of a notification framework enables beans to
notify or send messages to other beans. This critical function is what enables you
to build program elements by making connections. As stated previously, this
changes the way you develop your Java applications (it is better object orienta-
tion), but the end user will not notice any difference.

Deprecated Methods

Java 1.0 classes will work with Java 1.1 run-time support, but the Java 1.0 classes
do not use the methods implementing the different event model in JDK 1.1.
Although many Java V1.0 classes are beans, they are stale beans that need some
refining to be fully compatible with other JavaBeans. A number of methods in the
JDK class library were replaced by new methods, and these obsolete methods are
referred to as deprecated methods. An example of a deprecated method is the

o

CHO3_00488 4/3/00 8:30 AM Page 72 $

[72]

CHAPTER

Button enable() method, which is replaced with the setEnable(true) method. These
old methods work in the compiler and at run time in the virtual machine, but even-
tually, they will not be supported. It is a good idea to use the new JDK methods.

Types of Beans

The most atomic or granular bean is called a primitive bean. GUI and invisible
beans can be primitive beans. Examples of primitive beans from the Java class
library are Button, which is a GUI bean, and Color, which is an invisible bean.
You can change the settings and default properties of primitive beans in the VCE.

Beans can be combined to create composite beans. When you combine two
or more logic beans, you have a composite logic bean. For example, if you are
building the logic component of a Clock bean, you could combine the Timer and
Date logic beans in a composite logic bean named Clock. The Clock bean would
supply the services you would expect from such a bean, such as setting and get-
ting the time and date.

You create a composite GUI bean when you combine a GUI bean with one
or more other beans. For example, you can combine the previously discussed
logic Clock bean with a user interface bean that displays the time and date and
has buttons to perform the various clock functions. You could call this bean a
ClockView bean as shown in Figure 3.1. In fact, the clock could have multiple
views like digital, analog, or a combination, where the date is shown in digital
format and the time as a traditional clock with hands ticking.

GUI Beans

GUI beans are user interface controls in the AWT or JFC class library, such as
Button, TextField, and JFrame. The VCE generates Java code for all of the GUI
beans. GUI beans supplied with the VCE are sometimes called controls or
widgets. The terms controls and widgets came about because the higher level defi-
nitions in the Java AWT essentially map to the underlying graphical API for each
windowing system running Java; whereas the JFC controls do not directly map to
the operating system graphical controls. When talking about GUI beans in this
book, we will refer to them as beans or controls interchangeably.

Figure 3.1 ClockView composite GUI part.

3

CHO3_00488 4/3/00 8:30 AM Page 73 $

[73] —

MAKING AN ADDING MACHINE

All GUI beans are subclasses of Component, which is an abstract base class
in the Java class library. The Component class sets the base behavior for all user
interface controls and for Container, too. You can see this inheritance relationship
in Figure 3.2.

Finding Beans

You may want to search for other JavaBeans in the Workspace when you are
developing Java programs. Let’s try searching for Applet with the following steps:

y On the Workbench toolbar, select Search the button.

The Search dialog appears, as shown in Figure 3.3, allowing you to enter the
following:

Enter Applet in the Search String field.
Select Workspace radio button for the Scope.
Select Declarations radio button for the Usage.

Press the Start button to begin the search.

If there are no matches to the search string, the short message No matches
found appears at the bottom of the Search dialog. It’s a bit subtle, so be careful
because you may think VisualAge for Java is still searching. Also take care not to
waste time searching the entire Workspace for a common class reference. You can
always click the Stop button to end a search that is out of control. Once the
Search Results window opens, as shown in Figure 3.4, you can view the declara-
tion and methods in the Java Applet class.

You will often search for a method or a class that is referenced in many

places. When the search returns a list, you usually open a view or

browser to inspect the class in detail. Open a browser for the Applet by

selecting the Applet in the upper left pane, and from its pop-up menu

select the Open menu item.

When the Class browser opens, select the Hierarchy tab on the view as
shown in Figure 3.5.

Figure 3.2 Button inheritance hierarchy.

o Clazs Hierarchy
= {C) Object3
= @ Companent & 3
o Buttan =)

CHO3_00488 4/3/00 8:30 AM Page 74

—p—

[74]

CHAPTER

Figure 3.3 Search dialog.

[«C_,Jﬁealch Ed
Search sting: [* = any string]
I.i‘n.pplet
— Element
* Type " Field
€ Comstructor € Text
) Package) Hierarchy
= Method
—lzage
" Relerences * Declarations " Bath
Example: Object
Start I Stop Cloge

Tip

Be careful when searching. You should try to scope the search as much
as possible to save time. It is a good idea to look for declarations. Also,
there are usually many references in the Workspace, and you can scope

the search to the Project or Package to speed things up.

Now that you have found the Applet class, you can browse its definition and
learn more about the class and its superclasses. If you ever need information about
a bean, the search feature in the IDE is a fast way to get to that information. It
will also verify whether the class is loaded in the Workspace and available to use.

Tip

The Search Results window is non-modal, which means that you can
work on other views or browsers while the Search Results window is
open. You can also run multiple searches and have multiple Search

Results windows.

3

CHO3_00488 4/3/00 8:30 AM Page 75 $

[7s] —

MAKING AN ADDING MACHINE

Figure 3.4 Search results.

L@ Search Results = B3

File Edt Workspace Descrptions Besults Window Help

By U W

Search Descriptions 1 match
' L AppletB -]

. f) o

{3 Source (cannot be modified) (114 sting matches found)
package java El==ili

s 2

L

L |

@i FrApplet java 1.37 97-01-02

*

*

* Copyright (c) 1995, 1996 Sun Hicrosystem=, Inc. All Eight= Eese
*

E]

This software is the confidential and proprietary information o
II

HA mvmorrot o T~ F"iTmmF i Aawmtd sl Twfmrmatama " Wear =hinl 1 owes
J

| javaappletApplet1.1.6

Scoping a Search

VisualAge for Java Version 3 has a new search feature called a Working Set.
When you are working on certain projects or packages in the IDE, you can define
a Working Set that uses these project or packages for a search. Searching a
Working Set is much faster than searching the entire Workbench for a class defini-
tion. Let’s set up a Working Set with the following steps:

< Press the Search button and the Search Dialog displays as shown in
Y .
Figure 3.6.
Select the Working Set radio button, and press Choose, and the Choose
dialog displays.
Select the New button on the Choose dialog and another dialog displays.

Enter Hanoi for the Working Set name.

CHO3_00488 4/3/00 8:30 AM Page 76 $

[76]

CHAPTER 3

Figure 3.5 Applet hierarchy.

A Applet 1.1.7A in java_applet [Dale Nilsson] [_ (O] x|
File Edit ‘“Workspace Claszes Members ‘Window Help

¥y Y ooyswy @e

A Hierarchy [Editions |[R5%isual Campaosition | je Beaninfa

€3 Class Hierarchy = L] @Y Members < stk F
=6 Ohieca 1174 =1 [AppletSub stub T8 E
= (C) ComponentAB 1174 M applet)E

= (C) ContainerAZ1.1 74
=€) Panel@ 1174

<M AppletContext getdppletCaontext) 3 —
&M AudioClip getAudiDCIip(URL)@

&M wdioClip gettudioClip(URL, String) 2
Mboolean isActive(3

Mmage getimage (URL)E i
[I T |
|

PO L L PO . |

€ Source (cannot be modified)
paclkage java.applet: ﬂ

Y
£

@{#iApplet jawva 1.43 98-07-01

Copyright 1995-1998 by Sun Microsystems. Inc..
901 San Antonio Road, Palo Alto, California, 94303, U.S A
All rights reserved.

This software iz the confidential and proprietary information
of Sun Hicrosy=stens, Inc. {"Confidential Information"). ¥You
shall not disclose such Confidential Information and shall use
it only in accordance with the term= of the licen=e agresnent
vou entered into with Sun.

ERE R B B

*

_irlnpcnrt Jjava.awt *; _Ij
q s

|iava.appletApplet 1174 | Adrministrator

Select the com.ibm.ivj.examples.hanoi package in the tree view on the left
side of the window as shown in Figure 3.7.

As you can see from Figure 3.7, a Working Set can have a number of proj-
ects or packages. You can now use the Hanoi Working Set to easily limit searches
to that package. The Working Set definition is saved with the Workspace and can
be revised or deleted in the future. When you are finished, close the Search dialog.

Logic Beans

Logic or nonvisual beans contain business logic, such as mathematical computa-
tion, data access functions, and application logic. The JDK class libraries come
with a number of logic beans that are very helpful in building applications. Most
of these beans are designed for general-purpose use, and in many cases, they need
to be subclassed to add application-specific function. Figure 3.8 shows the com-
position of the ClockView application, combining both GUI and logic beans.

CHO3_00488 4/3/00 8:30 AM Page 77 $

[77]

MAKING AN ADDING MACHINE

Figure 3.6 Search Working Set.

[(_,J Search
Search string: [* = any string]
— Element Usage
i+ Type = Field = References

= Declarations
¢~ Constructor ¢ Methad
{* Both

—Scope

 Workspace

= Hierarchy | [EhoEse).. |
& daforking Set | Choose... |

E=ample: Object

Start I Stom | LCloze I

Logic JavaBeans are part of good object oriented design because they allow
the use of Model-View separation. This allows you to isolate or encapsulate the
logic from its view or visual representation. The logic beans can be reused with
other views and can be moved to a server.

Figure 3.7 New Working Set.

[(_,J\Fisualhge

‘wiorking Set Mame;

|H aroi

Projects Components
(v &5} B J ava Examples v {(3 Disk =]
[com.ibm.ivi.examples. awtte G DrawableH anai
[|8 com.ibm.ivi.examples. awtte G Hanoi
[# com.ibm.ivi. examples. awtte o Hanoitypplet
b ivi. ex [o Past

[# comibr.ivi examples. ve.bo

[)¢57# com.ibm.ivi.examples. ve. oL
[|8 com.ibm.ivi.examples.ve. lay
[com.ibrm.ivi.examples. v me

[com.ibm.ivi.examples. ve.pe bt
Kl | 3 I N »

7 items selected

oK I Cancel |

o

CHO3_00488 4/3/00 8:30 AM Page 78 $

[78]

CHAPTER

Figure 3.8 ClockView composite with logic beans.

Time: 9:12 am i————o

Time
Analog | Digital |

Building an Adding Machine

In this chapter, you will build an Adding Machine application that combines GUI
and logic beans. First, you will construct the GUI bean, CalculatorView, and then
you will develop a logic bean, Calc, that you will use in combination with the
GUI bean to perform the calculations.

The Adding Machine enables you to enter two numbers, press a button to
add the contents of the two TextFields, and display the result in the output field.
The application window has:

Three TextFields, two for accepting the numbers to be added and one to
display the result

Three Labels for the TextFields
A Button for the Add function

A logic bean, which performs the addition and signals that the operation
has been performed and that the result property in the Calc bean has
changed

Let’s begin by making a new applet in the Visual Composition Editor to build
the view of the Adding Machine. You will build and test the CalculatorView GUI
bean before building the Calc logic bean. This is a new application, so you should
make a new package before starting the new class. By creating the new package,
you keep the classes, methods, and ultimately the files for the different applications
separate. If the VisualAge for Java Workbench is not started, restart it now.

Creating a New Package

First, create the new package for this program in the project used for the Hello
World applet.

In the Workbench, move to the upper pane and select the My Project
project.

If you skipped Chapter 2, “Building the Hello World Applet,” you need
to create a new project in the Workbench. From the menu bar, select

o

3

CHO3_00488 4/3/00 8:30 AM Page 79 $

[79] —
MAKING AN ADDING MACHINE

Figure 3.9 Add Project SmartGuide.

EC_,:l SmartGuide E3
]
Add Project

{« Create a new project named:

|M_l,l Projec

= Add projects from the repositony

Aevailable project names Anailable editions

4 2l of

0 editions selected

< Banh I Finizh I Cancel |

Selected => Add => Project, or else select the Project icon on the tool
bar. This displays the project SmartGuide, as shown in Figure 3.9, where
you can enter the project name. Once you have a project to add new
classes, you can proceed.

The next thing to do is to create the package, which will contain all the com-
ponents of the Simple Adder applet.

With My Project selected, right-click on the top pane, and from the pop-
up menu select Add Package.

In the Create a new package named entry field, enter calculator and click.
Press the Finish button to create the package, as shown in Figure 3.10.

After the calculator package is created, your Workbench should look like
Figure 3.11.

Creating a New Class

Now that you have defined the project and the package in the IDE, you can start
defining the beans that will make up the Simple Adder. The project and package

o

CHO3_00488 4/3/00 8:30 AM Page 80 $

— [s0]

CHAPTER 3

Figure 3.10 Add Package SmartGuide.

{3 SmartGuide

Figure 3.11 Workbench with My Project and calculator package.

CHO3_00488 4/3/00 8:30 AM Page 81 $

[81] —
MAKING AN ADDING MACHINE

Figure 3.12 Create Class SmartGuide.

[«C_,.J SmartGuide

Create Class

Project: IM_',J Project Browse...

Fackage: |ca|cu|at|:|l Browse...

« Create anew class

Clagz name: |Ca|n:u|atu:ur'v'ie1.4

il

Superclass: |iava.lang.Dhiect Browse. ..
¥ Browsze the class when finished

¥ Compose the clazs visually e

€ Add types from the repositany

Avallable types Avallable ediions

) Ha o

0 editiohz selected

% Back | i [=ee | Finizh I Cancel |

provide the structure for the IDE to contain and catalog your beans in the
Workspace. Packages are also used when exporting your Java classes. To begin
building the CalculatorView with the following steps:

With the calculator package selected, right-click the top pane, and from
the pop-up menu select Add => Class.

In the Create Class SmartGuide shown in Figure 3.12, enter
CalculatorView in the Class name entry field.

Make sure you capitalize the class name. It is a Java convention to capitalize
class or bean names, and this is for a very good reason. Beans have constructors

o

CHO3_00488 4/3/00 8:30 AM Page 82 $

[82]

CHAPTER

Figure 3.13 Class Qualification dialog.

EC_,:l Superclass E3

Chooze a superclazs:

Fattern [# = any character, * = any sting]

|a|:up|

Type Mames:
AppletdudioClip
AppletE eanlnfo
AppletClazsloader

AppletE vent

AppletE venthulbicaster

AppletllegaltrgumentE sception

Appletl DE xception

AppletPanel

AppletResourceConnection

AppletResourceloader LI

FPackage Names:

Ok I Cancel |

that are essentially methods with no return value. Capitalizing bean names makes
it is easy to identify constructors, because they are capitalized methods with the

same name as the bean.

Press the Browse button opposite the Superclass entry field, and type the

word Applet to select the Applet class from the java.applet package. Notice
that as you type in the SuperClass Dialog, the choice of class names is nar-

rowed down as shown in Figure 3.13. You may need to use the scroll bar
in the Type Names: list to see the Applet class listed at the top.

Once the Applet bean is selected, press the OK button to save this selec-

tion, and close the Class Qualifications Dialog.

Make sure that the Design the class visually radio button is selected on

the Smart Guide, as shown in Figure 3.12. This radio button is merely a

convenience; it causes the browser to automatically open to the VCE.

Press the Finish button to complete the specifications for the applet so
VisualAge for Java can generate the code to create the CalculatorView

o

3

CHO3_00488 4/3/00 8:30 AM Page 83 $

MAKING AN ADDING MACHINE

Figure 3.14 Visual Composition Editor.

C) Calculatorview([12/26/98 10:25:14 PM] in calculator M= E3
File Bean Edit Tools ‘Workspace Window Help

H 8y 9w HHADHL DI

@1 Methods .{' Hierarchy Editiors | M0zl Composition | fe Beanlnfo

G Compogition Editor
AT -

] [z
&
B i
ET

O CH
v 4 u"

I Calzulatoryiew [java.applet Applet] selectad.

| »

class. You can use the standard class SmartGuide for simple applets.
Later you will use this same SmartGuide to make logic JavaBeans.

The VCE now opens, enabling you to place the visual components that make
up the CalculatorView, as shown in Figure 3.14. The browser for the
CalculatorView class automatically opens to the VCE page because you told the
SmartGuide that you wanted to design this class visually. This is primarily a con-
venience—you can simply open a visual class in the Workbench and flip to the
VCE page at any time. As you develop Java programs using the VCE in this
book, many of the screen captures in the VCE will show the design surface and
omit the toolbar and other areas when they aren’t used.

Layout Managers

The HelloWorld applet was built using no Layout Manager; actually, it had a
Layout Manager set to null. Using a null layout is not a good design, because it
uses pixel coordinates to position the controls. This creates a new variation for
Java applications: write once and run anywhere, but it will look different with
different browsers and various screen resolutions. The net effect is that a perfectly
aligned applet on your screen may appear jumbled and ugly elsewhere. Java

[83] —

CHO3_00488 4/3/00 8:30 AM Page 84 $

[84]

CHAPTER

Layout Managers are provided to handle the run-time alignment and positioning
of GUI JavaBeans. Layout Managers are properties of Java Containers, so the
Layout Manager can be easily set in the property sheet.

Tip

There is a real cool stealth feature in VisualAge for Java Version 3.0 that
transforms a null Layout to a GridBaglLayout automatically. You will see
how this feature works in Chapter 6, “Building the Advanced Calculator
GUL.” This feature provides one way to use a good GridBag layout, but
you still should become familiar with the different layout managers and
their behavior.

Containers can use one of the Layout Managers in the JDK or you can also
make your own Layout Managers. This means that Frames, Applets, and Panels
can all have their own Layout Managers. In this chapter, you will use GridLayout;
later, when you build the Advanced Calculator, you will use multiple panels with
different Layout Managers. When you combine Containers with different Layout
Managers, you must be careful, because the different Layout Managers can pro-
duce conflicting behavior that will not provide the result you expect. This program
is an Applet, and because an Applet is a Container, it will have its own Layout
Manager.

Layout Managers are used to align, space, and size controls placed on an
Applet, Panel or other Container. There are several types of Layout Managers,
and only experience will make you comfortable using them. Following are some
of the basic Layout Managers in the JDK:

* BorderLayout

¢ BoxLayout

® (CardLayout

¢ FlowLayout

¢ GridBaglayout

e GridLayout

Each Layout Manager provides its own behavior and can be customized

within the VCE. Each standard Layout Manager subclasses Object and imple-
ments either the LayoutManager or LayoutManager2 interface. Many Containers
have a default Layout Manager if no Layout Manager is specified. It is best to
specify the Layout Manager to insure your Container will perform as you expect.
There is also a layout called null, which forces the positions of GUI beans to be

fixed in the Container. In later chapters, you will use other Layout Managers like
the Border, Flow, and GridBag layouts.

o

3

CHO3_00488 4/3/00 8:30 AM Page 85 $

[8s] —
MAKING AN ADDING MACHINE

Custom Layouts

The VCE lists all the Java Layout Managers in a Container’s property sheet.
Version 3 includes all user-defined Layout Managers loaded in the Workspace. If
you create your own Layout Manager, it can now be used in the VCE.

The VCE always generates a setLayout() method in the init() method of an
Applet. The code for the init() method is shown in the next section. You would
enter the code for the setLayout() method in a user code area provided in the gen-
erated code. All of the other code is regenerated, so you should put code here at
your own risk. You can see the warning in the code that this method will be
regenerated, and you will lose changes to the source code.

You can change the comment heading for regenerated methods. This can be
found in the Workbench Options dialog. You can also add comments to the user
code areas. The following code for the CalculatorView init() method, viewable
from the Methods page, shows some user exits for Java code:

/ * %
* Handl e the Applet init method.
*/
/* WARNNG TH S METHCD WLL BE REGENERATED. */
public void init() {
super.init();
try {

set Narre(“ Cal cul ator Vi ew') ;

set Layout (nul |);

set S ze(300, 203);

/1l user code begin {1}

/1 user code end

} catch (java.lang. Throwabl e ivjExc) {

/1l user code begin {2}

/'l user code end

handl eExcepti on(i vj Exc);

Using a GridLayout

For the Adder applet, you will use GridLayout, which is used when you want to
align a number of same-sized beans. This layout is frequently used for entry
forms, because it can keep TextFields and Labels aligned.

Place the mouse over the applet and open its property sheet.
Select the layout field, which then displays a button.

Select the Layout Manager drop-down list, and select GridLayout from
the list as shown in Figure 3.15.

o

CHO3_00488 4/3/00 8:30 AM Page 86

[86]

—p—

CHAPTER

Figure 3.15 Layout properties.

E(,:l[:alculatm‘lﬂ"iew - Properties [E4

I Calculatoriew

background | |
beant ame Calculatoriew

\+| congtraints w2020 v 300 ke
enabled True

font

fareground

vizible

Dizlog. plain, 12

<l A

<nully

BarderLapaut
BoxLayaut
CardLayout

layonit

[~ Show expert fe

Flomwl ayout

GridB agl ayout
andla

pout, i

LU

Now that you have changed the layout to GridLayout, some properties for

the GridLayout are displayed in the property editor. The Visual Composition

Editor assumes 1 row and 0 columns. You will usually need to change these prop-
erties to achieve the results that you want instead of what the default GridLayout

behavior. Use the following steps to set properties for GridLayout:

Expand the layout + in the property editor.
Set the columns to 1.

Set the rows to 7.

Close the property sheet to save these changes. The Applet will not look
any different, because the Layout Manager will only affect the GUI
beans placed on it, and currently the Applet has no GUI beans.

Adding GUI Beans to a GridLayout

The Simple Adder needs the GUI beans for the user interface. Add the needed
GUI beans to the GridLayout with the following steps:

First, make the Applet smaller by resizing it. Select the Applet with the
left mouse button, select one of the handles (the black squares in the cor-
ners), and drag the handle to resize the Applet.

Place three Label beans alternating with three TextField controls on the
GridLayout on the applet. See Figure 3.16 for suggested placing of con-
trols. You may need to drag and drop some of the controls until you like
the Applet’s appearence. The ability to dynamically reposition GUI
JavaBeans is very helpful in designing user interfaces.

o

3

CHO3_00488 4/3/00 8:30 AM Page 87 $

[87] —
MAKING AN ADDING MACHINE

Figure 3.16 Applet with GUI beans.

|_ahell

L_ahel2

L ahel3

Buttan1

Tip

VisualAge for Java Version 1 had a Sticky checkbox to make it easier to
drop multiple controls of the same type. Version 3 does not have the
Sticky checkbox—you need to press the Ctrl key when you select the icon
in the VCE palette. You can also use the clipboard copy/paste features to
copy several of the same controls. You can even use copy/paste to copy
JavaBeans between different VCE windows.

Select a Button, move the mouse pointer to a position near the bottom
of the dashed box on the VCE, and press the left mouse button to drop
the Button.

Setting the Text Property

Many GUI JavaBeans have a text property that is a Java String that holds the
value of the characters displayed on the GUI bean. But Buttons are special; they
have a label property for the same purpose. You need to edit these properties in
the CalculatorView Applet with the following:

Open the property for the Button and change the label property of the
Button to Add.

Edit the text properties for the Label controls to describe the TextFields
below them. Use First number, Second number, Result for the respective
Labels. When you finish the CalculatorView, it should look like Figure
3.17. You can also edit the Label text in the property sheet.

o

CHO3_00488 4/3/00 8:30 AM Page 88 $

— [ss8]
CHAPTER 3

Figure 3.17 Beans placement.

First Mumber

Second Number

Result

Add

Naming Beans

Each bean you drop has a default name. The first TextField control you drop is
called TextField1. In addition, the first TextField you drop on the next composite
you build will also be named TextField1. You can see that the proliferation of
beans named TextField1 could cause a debugging nightmare. Changing the name
to something more meaningful will help you follow the generated code, and it
will provide some level of documentation for the code. So give the beans appro-
priate names. Change the bean names with these steps:

Point to a GUI bean, click the right mouse button, and select Change
Bean Name from the pop-up menu.

Change the names of the TextFields to tfNum1, tfNum2, and tfResult.
Change the name of the Button to pbAdd.

Read-Only TextFields

Because the result of the calculation will be supplied by a logic bean that is yet to
be built, the result TextField should not allow keyboard input. One way to
achieve this is to set the editable property to False.

Double-click on the tfResult TextField to open its property sheet.
Select the editable => field; from its pull-down menu, select False.

Close the property sheet to save the change.
If you make any changes to a control in a property sheet and decide you do
not like the changes, there is an easy way to go back to the old settings. After you

close the property sheet, you can go to the Edit menu of the Visual Composition
Editor and select Undo. You can step back through the changes until you get the

o

CHO03_00488 4/3/00 8:30 AM Page 89 $

[80] —
MAKING AN ADDING MACHINE

Figure 3.18 CalculatorView applet running.

[«C_,Jhpplel Viewer:_._ [[l[=]

Applet

First Mumber

Second Mumber

Result

Add

Applet started.

bean back to the way you want it. Remember that Edit/Undo is your friend.
There is also a Redo function if you go too far in your undoing.

Testing an Applet

* Now you are ready to run this applet for the first time. From the upper tool bar
J of the VCE, press the Run button. This generates run-time code for the applet.

Once compilation ends, the appletviewer window appears using the
default size and parameters for the applet. The appletviewer starts and
runs the CalculatorView applet, as shown in Figure 3.18.

You can move between the first two fields, enter values, and press the Add
button (of course, nothing happens yet). Nothing can be entered in the Result
field because you made it noneditable. If you use the mouse to increase or
decrease the window size, the GUI beans stay centered in the applet and the GUI
beans expand, thanks to the GridLayout. It is usually good to have TextFields
expand, but Buttons should not expand in the user interface. Close the applet
viewer when you finish testing it.

Naming Conventions

Before you begin building the application is a good time to have a short discus-
sion of naming conventions. When developing applications, it is prudent to
adopt some consistent naming conventions. Java is a case-sensitive, type-specific

o

CHO3_00488 4/3/00 8:30 AM Page 90 $

[90]

CHAPTER

language, which means that each class, method, and data field must have a
unique name and a defined type. Use descriptive names to make your beans more
usable. A good guideline is to have a set of prefixes and suffixes that can ensure
consistent naming. For example, the Hello World application used the pb prefix
for Buttons. Most people have their own naming conventions as well as coding
style conventions. In this book, the names of class instance variables start with a
lowercase character.

Each word in the name of a class or bean also starts with an uppercase char-
acter. For example, the adding machine view is called CalculatorView. Any prop-
erties of a class or bean start with a lowercase character. Each subsequent word in
the name of the property starts in uppercase. For example, the property that
holds the result of the calculation is called result. The convention for instances of
a class is the same as for properties. For example, the instance of the entry field
that displays the calculation result is called #/Result.

When you create an instance of a class, you should try to identify the type of
class you are instantiating. For example, you can use #f as the beginning of the
instance name for an entry field. Adhering to these simple suggestions makes it
easier to follow and understand the generated code, as well as to understand the
connection messages that are issued by the program at run time. It also improves
debugging, in the rare event that you make a programming error.

What Are Tab Stops?

Tabbing is a useful feature in user interfaces that improves screen navigation. The
term Tab stop describes the position or location where the cursor goes when you
press the Tab key. Each control placed on a canvas can be designated as a Tab
stop. This designation determines the cursor position after the user presses the
arrow or Tab keys.

Pressing the Tab key moves the cursor from its current position to the next
control that has been designated a tab stop. The tabbing sequence is determined
by the order in which the controls occur in the generated Java code. This order is
determined by the order that controls are placed in the container. This order can
be easily viewed and changed visually.

Setting the Tab Order

This section describes how you can define Tab stops and tabbing order. By default,
AWT GUI beans have tabbing function automatically at run time. Tabbing order
can be determined from the Applet’s pop-up menu. To see an Applet’s current tab-
bing order, select the Applet. Make sure the tip of the mouse pointer is not over
one of the GUI beans; it should be at the bottom of the Applet in the small gap
between the Button and the Applet. If the container is completely covered by GUI
components, you will need to use the Beans List described in the next section.

3

CHO3_00488 4/3/00 8:30 AM Page 91 $

[91]

MAKING AN ADDING MACHINE

Figure 3.19 Beans List for the applet.

E(,:l[:alculatm‘lﬂ"iew - Beans List [E4

= @ Calculatoryiew
Labell
I TFMum1
Label2
I TFMum?
Label3
I TFResult
_PBAdd

] 2

Using the Beans List

As you can see, selecting some beans like Containers can be difficult. Sometimes
the GUI beans are hidden or covered by other beans. In the case of Containers,
controls can fill the Container bean so you can’t access it. A special window
enables you to select and work on beans. The Beans List shows all the JavaBeans
in the VCE and all the visual connections that are listed at the bottom. Let’s use
the Beans List window to view the Tab Stops with the following steps:

From the menu bar, select Tools => Beans List. The Beans List window

appears. You could also use the Beans List icon on the tool bar to open
this window.

Expand the CalculatorView by pressing the expansion (+) icon as shown

in Figure 3.19.

This window is very helpful for accessing beans in a Container; it provides a
graphical tree view of all beans associated with this composite bean. This window
lists all beans in this Applet, so you can easily select a bean and access all func-
tions on its pop-up menu, like Properties, Delete, Open, and also the visual con-
nections at the bottom. You can also drag and drop components in this window
to put them in the desired order. The VCE will then generate the code with the
components in the new order. If the TextFields and Buttons do not appear in the
proper order, you can drag and drop them into the proper sequence by:

Selecting a control.
Using the mouse to drag the control to the proper position.

Releasing the mouse button to drop the control and set its position.

CHO3_00488 4/3/00 8:30 AM Page 92 $

— [92]
CHAPTER 3

Figure 3.20 Setting Tab stops.

=] Calculatoryisw j‘
= @ Calculatoryiew

Labell

I TFMum1

Label2

I TFMum?

Label3

-

] 2

Now you are ready to see the tab stops for the Applet by following these
steps:

Select the second CalculatorView item and press the right mouse button
to get the pop-up menu.

Select Set tabbing => Show Tab Tags to see the tabbing order as shown
in Figure 3.20.

Tip
After you have finished adjusting the Tab tags, you can hide them using

the same process. When the Tab tags are showing, the pop-up menu
item for the applet shows Hide Tab Tags.

The VCE now shows the Applet with little yellow tab tags on each control in
the Applet. The number in the tab tag indicates the sequence that the cursor will
follow when you press the Tab key. If the TextFields and Buttons do not appear in
the proper order, you can drag and drop the tab tags in the proper sequence. Set
the tabbing order so the tabbing sequence starts with tfNum1 and then goes to
tfNum?2, tfResult, and pbAdd, as shown in Figure 3.19, with these steps:

Select one of the tags.
Drag the tag to the proper position.
Drop the tag to set its position.

Continue dragging and dropping the tab tags until they are in the proper
order.

o

CHO3_00488 4/3/00 8:30 AM Page 93 $

[93] —
MAKING AN ADDING MACHINE

Figure 3.21 Running the Adding Machine.

[«C_,Jhpplel Viewer:_._ [[l[=]

Applet

First Mumber

Second Mumber

Result

Add

Applet started.

The new tabbing order will be saved when you save the applet. The tab tags
show only at development time, not at run time. You can hide the tags with these
steps:

From the Beans List, select the pop-up menu for CalculatorView.
Select Set Tabbing => Hide Tab Tags.

Close the Beans List window because it is no longer needed.

Running the Updated Adding Machine

You have completed the user interface for the CalculatorView applet. Now it is
time to save and run the updated applet.

‘*) Select the Run tool bar button to save, generate, compile, and run the
applet.

When the applet starts, it should look like Figure 3.21. The user interface
looks like it did the last time you ran the Adding Machine. You can enter num-
bers in the TextFields, and the tabbing works correctly. When you are finished
reviewing the running applet, you can leave the applet running. In the next
chapter you will add the logic to the applet, and you will be able to use that
function by merely reloading the applet.

CHO3_00488 4/3/00 8:30 AM Page 94 $

[94]

CHAPTER

Summary

This was a little tougher than the Hello World application, but it was still pretty
easy. You still need to make a logic bean with the add function, which is covered
in the next chapter. In this chapter you learned the following:

VisualAge JavaBeans Basics including:
e Composite beans

® GUI beans

® Logic beans

How to Search in the IDE and define a Working Set

How to build the Adding Machine application user interface that
included:

® Using a GridLayout

¢ Adding TextField, Label and Button beans

e Setting Tab order

These are the very basics of GUI design programming. In the following chap-
ter, you will create a logic bean with the add function, complete the
CalculatorView, learn another important aspect to JavaBeans; namely bean fea-
tures, and define JavaBeans properties and methods.

3

